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Chapter 1

Definitions of fundamental quantities of the
radiation field

1.1 Specific intensity

This is the most fundamental quantity of the radiation field. We shall be dealing with
this quantity throughout this book.

Let d Eν be the amount of radiant energy in the frequency interval (ν, ν + dν)

transported across an element of area ds and in the element of solid angle dω during
the time interval dt . This energy is given by

d Eν = Iν cos θ dν dσ dω dt, (1.1.1)

where θ is the angle that the beam of radiation makes with the outward normal to
the area ds, and Iν is the specific intensity or simply intensity (see figure 1.1).

The dimensions of the intensity are, in CGS units, erg cm−2 s−1 hz−1 ster−1. The
intensity changes in space, direction, time and frequency in a medium that absorbs

P

d

ds

Normal to ds =
θ

Ω

ω

n

Figure 1.1 Schematic
diagram which shows how
the specific intensity is
defined.
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2 1 Definitions of fundamental quantities of the radiation field

and emits radiation. Iν can be written as

Iν = Iν(r, �, t), (1.1.2)

where r is the position vector and � is the direction. In Cartesian coordinates it can
be written as

Iν = Iν(x, y, z; α, β, γ ; t), (1.1.3)

where x , y, z are the Cartesian coordinate axes and α, β, γ are the direction cosines.
If the medium is stratified in plane parallel layers, then

Iν = Iν(z, θ, ϕ; t), (1.1.4)

where z is the height in the direction normal to the plane of stratification and θ and
ϕ are the polar and azimuthal angles respectively. If Iν is independent of ϕ, then we
have a radiation field with axial symmetry about the z-axis. Instead of z, we may
choose symmetry around the x-axis.

In spherical symmetry, Iν is

Iν = Iν(r, θ; t), (1.1.5)

where r is the radius of the sphere and θ is the angle made by the direction of the
ray with the radius vector.

The radiation field is said to be isotropic at a point, if the intensity is independent
of direction at that point and then

Iν = Iν(r, t). (1.1.6)

If the intensity is independent of the spatial coordinates and direction, the radiation
field is said to be homogeneous and isotropic. If the intensity Iν is integrated over
all the frequencies, it is called the integrated intensity I and is given by

I =
∫ ∞

0
Iν dν. (1.1.7)

There are other parameters that characterize the state of polarization in a radiation
field. These are studied in chapters 11 and 12.

1.2 Net flux

The flux Fν is the amount of radiant energy transferred across a unit area in unit
time in unit frequency interval. The amount of radiant energy in the area ds in the
direction θ (see figure 1.1) to the normal, in the solid angle dω, in time dt and in
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the frequency interval (ν, ν + dν) is equal to Iν cos θ dω dν ds dt . The net flow in
all directions is

dν ds dt
∫

Iν cos θ dω,

or

Fν =
∫

Iν cos θ dω. (1.2.1)

The integration is over all solid angles. This is the net flux and is the rate of flow of
radiant energy per unit area per unit frequency.

In polar coordinates, where the outward normal is in the z-direction, we have

dω = sin θ dθ dϕ, (1.2.2)

where ϕ is the azimuthal angle. The net flux Fν then becomes

Fν =
∫ 2π

0

∫ π

0
Iν cos θ sin θ dϕ dθ. (1.2.3)

The dimensions of flux are erg cm−2 s−1 hz−1. Equation (1.2.3) can also be written
as

Fν =
∫ 2π

0
dϕ

∫ π/2

0
Iν cos θ sin θ dθ +

∫ 2π

0
dϕ

∫ π

π/2
Iν cos θ sin θ dθ

= Fν(+) − Fν(−), (1.2.4)

where

Fν(+) =
∫ 2π

0

∫ π/2

0
Iν cos θ sin θ dθ dϕ (1.2.5)

and

Fν(−) =
∫ 2π

0

∫ π/2

π

Iν cos θ sin θ dθ dϕ. (1.2.6)

The physical meaning of equation (1.2.4) is as follows: Fν(+) represents the
radiation illuminating the area from one side and Fν(−) represents the radiation
illuminating the area from another side. Therefore Fν , the flux of radiation trans-
ported through the area, is the difference between these illuminations of the area.
The flux depends on the direction of the normal to the area. The dependence of the
flux on direction shows that flux is of vector character. In the Cartesian coordinate
system, let the angles made by the direction of radiation with the axes x , y and z
be α1, β1 and γ1 respectively, then the flux or radiation along the coordinate axes is
given by

Fν(x) =
∫

Iν cos α1 dω, (1.2.7)
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Fν(y) =
∫

Iν cos β1 dω, (1.2.8)

Fν(z) =
∫

Iν cos γ1 dω. (1.2.9)

Furthermore, if α2, β2 and γ2 are the angles made by the coordinate axes and the
normal to the area and θ is the angle between the normal and the direction of the
radiation, then

cos θ = cos α1 cos α2 + cos β1 cos β2 + cos γ1 cos γ2. (1.2.10)

Substituting equation (1.2.10) into equation (1.2.1), we get

Fν = cos α2 Fν(x) + cos β2 Fν(y) + cos γ2 Fν(z). (1.2.11)

The integrated flux over frequency is

F =
∫ ∞

0
Fν dν. (1.2.12)

If the radiation field is symmetric with respect to the coordinate axes, then the net
flux across the surface oriented perpendicular to that axis is zero as the oppositely
directed rays cancel each other. In a homogeneous planar geometry, Fν(x) and Fν(y)

are zeros and only Fν(z) exists. In such a situation, we have

Fν(z, t) = 2π

∫ +1

−1
I (z, µ, t)µ dµ, (1.2.13)

where µ = cos θ .
The astrophysical flux FAν(z, t) normally absorbs the π on the RHS of equation

(1.2.13) and is written as

FAν(z, t) = 2
∫ +1

−1
I (z, µ, t)µ dµ (1.2.14)

and the Eddington flux FEν is defined as

FEν(z, t) = 1

2

∫ +1

−1
I (z, µ, t)µ dµ. (1.2.15)

1.2.1 Specific luminosity

The specific luminosity was suggested by Rybicki (1969) and Kandel (1973). We
define it following Collins (1973).

From figure 1.2, we define the specific luminosity L(ψ, ξ) in terms of the
orientation variables ψ and ξ as

L(ψ, ξ) = 4π

∫
A

I (θ, φ)n̂(θ, φ) · ô(θ, φ) d A(θ, φ), (1.2.16)

where n̂(θ, φ) and ô(θ, φ) are position dependent unit vectors normal to the surface
and in the direction of the observer respectively. The area A over which the specific



1.3 Density of radiation and mean intensity 5

intensity I (θ, φ) is to be integrated is the ‘observable’ surface and is defined by the
orientation angles ψ and ξ . It is obvious from equation (1.2.16) that L(ψ, ξ) is a
function of the orientation of the object with respect to the observer and is measured
per unit solid angle; the total luminosity L is given in terms of L(ψ, ξ) as

L = 1

4π

∫
4π

L(ψ, ξ) d�(ψ, ξ). (1.2.17)

1.3 Density of radiation and mean intensity

Let V and � be two regions (see figure 1.3) the latter being larger than the former in
linear dimensions but sufficiently small for a pencil not to have its intensity changed
appreciably in transit. The radiation travelling through V must have crossed the
region � through some element; let d� be such an element with normal N. The

Z

To
Observer

ξ

φ

θ

ψ

no

Y

X

Figure 1.2 The angles θ

and φ are the angular
coordinates of a point on the
stellar surface, and therefore
represent a local structure.
The angles ψ and ξ

represent the orientation of
the stellar body (from
Collins (1973), with
permission).

PV

d r

d

d

ω

σ

Ω

N
n Σ

Σ

Figure 1.3 Schematic
diagram to define density of
radiation.
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energy passing through d� which also passes through dσ with normal n on V per
unit time is

Iν(���, N) d� dω′ dν, (1.3.1)

where

dω′ = (��� · n) dσ/r2. (1.3.2)

If l is the length travelled by the pencil in V , then an amount of energy

Iν(��� · n)(��� · N) dσ d� dν

r2

l

c
(1.3.3)

will have travelled through the element in time l/c, where c is the velocity of light.
The solid angle dω subtended by d� at P is (� · N) d�/r2 and the volume

intercepted in V by the pencil is given by

dV = l(��� · n) dσ. (1.3.4)

This amount of energy is given by

1

c
Iν dν dV dω. (1.3.5)

Therefore, the contribution to the energy per unit volume per unit frequency range
(in the interval ν, ν + dν) coming from the solid angle dω about the direction � is
Iν dω/c and the energy density is defined as

Uν = 1

c

∫
Iν dω. (1.3.6)

The average intensity or mean intensity Jν is

Jν = 1

4π

∫
Iν dω, (1.3.7)

so that

Uν = 4π

c
Jν . (1.3.8)

For an axially symmetric radiation field, Jν is given by

Jν = 1

2

∫ π

0
Iν sin θ dθ

= 1

2

∫ +1

−1
I (µ) dµ. (1.3.9)

The integrated energy density U is

U =
∫ ∞

0
Uν dν = 1

c

∫
I dω. (1.3.10)

The dimensions of energy density are erg cm−3 hz−1 and those of the integrated
energy density are erg cm−3. The dimensions of the mean intensity are erg cm−2

s−1 hz−1.
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1.4 Radiation pressure

A quantum of energy hν will have a momentum of hν/c, where c is the velocity of
light in the direction of propagation. The pressure of radiation at the point P (see
figure 1.1) is calculated from the net rate of transfer of momentum normal to an area
ds, which contains the point P. The amount of radiant energy in the frequency range
(ν, ν + dν) incident on ds making an angle θ with the normal to ds traversing the
solid angle dω in time dt is

Iν cos θ dω dν ds dt. (1.4.1)

The momentum associated with this energy in the direction Iν is

1

c
Iν cos θ dω dν ds dt. (1.4.2)

Therefore the normal component of the momentum transferred across ds by the
radiation is

1

c
dσ dt Iν cos2 θ dω dt. (1.4.3)

The net transfer of momentum across ds by the radiation in the frequency interval
(ν, ν + dν) is

dσ dt

c

∫
Iν cos2 θ dω dν, (1.4.4)

where the integration is over the whole sphere. The pressure at the point P is the net
rate of transfer of momentum normal to the element of the surface area containing
P in the unit area; the pressure pr (ν) dν can be written in the frequency interval as

pr (ν) = 1

c

∫ 2π

0

∫ π

0
Iν cos2 θ sin θ dθ dϕ. (1.4.5)

If the radiation field is isotropic, then

pr (ν) = 2π

c
Iν

∫ π

0
µ2 dµ = 4

3

π

c
Iν (µ = cos θ) (1.4.6)

or in terms of energy density Uν

pr (ν) = 1

3
Uν . (1.4.7)

The radiation pressure integrated over all frequencies is

pr =
∫ ∞

0
pr (ν) dν (1.4.8)

or

pr = 1

c

∫
I cos2 θ dω, (1.4.9)
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where I is the integrated intensity. Furthermore

pr = 1

3
U. (1.4.10)

It can be seen that the dimensions of radiation pressure are the same as those of
energy density, that is, erg cm−3 hz −1 and the integrated radiation pressure has the
dimensions of erg cm−3.

1.5 Moments of the radiation field

Moments are defined in such a way that the nth moment over the radiation field is
given by

Mn(z, n) = 1

2

∫ +1

−1
Iν(z, µ)µn dµ. (1.5.1)

Following Eddington, we can have the zeroth, first and second moments as:

1. Zeroth moment (mean intensity):

Jν(z) = 1

2

∫ +1

−1
I (z, µ) dµ. (1.5.2)

2. First moment (Eddington flux):

Hν(z) = 1

2

∫ +1

−1
I (z, µ)µ dµ. (1.5.3)

3. Second moment (the so called K -integral):

Kν(z) = 1

2

∫ +1

−1
I (z, µ)µ2 dµ. (1.5.4)

1.6 Pressure tensor

The rate of transfer of the x-component of the momentum across the element of
surface normal to the x-direction by radiation in the solid angle dw per unit area in
the direction whose direction cosines are l, m, n is

1

c
I l dω l, (1.6.1)

where I is the integrated radiation. If monochromatic radiation is considered, then
I should be replaced by Iν dν. The total rate of x-momentum transfer across the
element per unit area is pr (xx):
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pr (xx) = 1

c

∫
I l2 dω. (1.6.2)

Similarly the y- and z-components are given by

pr (xy) = 1

c

∫
I lm dω and pr (xz) = 1

c

∫
I ln dω. (1.6.3)

The quantities pr (yx), pr (yy), pr (yz), pr (zx), pr (zy) and pr (zz) are similarly
defined for elements of the surfaces normal to the y- and z-directions. These nine
quantities constitute the ‘stress tensor’.

One can see that pr (xy) = pr (yx), pr (xz) = pr (zx) and pr (yz) = pr (zy) or
that the tensor is symmetrical. The mean pressure p̄ is defined by

p̄ = 1

3
[pr (xx) + pr (yy) + pr (zz)], (1.6.4)

and

p̄ = 1

3c

∫
Iω = 1

3
U, (1.6.5)

as l2 + m2 + n2 = 1.
In the case of an isotropic radiation field

p̄ = pr (xx) = pr (yy) = pr (zz) = 1

3
U, (1.6.6)

and

pr (xy) = pr (yx) = 0,

pr (xz) = pr (zx) = 0,

pr (yz) = pr (xy) = 0.


 (1.6.7)

1.7 Extinction coefficient: true absorption and scattering

A pencil of radiation of intensity Iν is attenuated while passing through matter of
thickness ds and its intensity becomes Iν + d Iν , where

d Iν = −Iνκν ds. (1.7.1)

The quantity κν is called the mass extinction coefficient or the mass absorption
coefficient. κν comprises two important processes: (1) true absorption and (2) scat-
tering. Therefore we can write

κν = κa
ν + σν, (1.7.2)

where κa
ν and σν are the absorption and scattering coefficients respectively. Ab-

sorption is the removal of radiation from the pencil of the beam by a process
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which involves changing the internal degrees of freedom of an atom or a molecule.
Examples of these processes are: (1) photoionization or bound–free absorption by
which the photon is absorbed and the excess energy, if any, goes into the kinetic
energy of the electron thermalizing the medium; (2) the absorption of a photon by a
freely moving electron that changes its kinetic energy which is known as free–free
absorption; (3) the absorption of a photon by an atom leading to excitation from
one bound state to another bound state, which is called bound–bound absorption
or photoexcitation; (4) the collision of an atom in a photoexcited state which will
contribute to the thermal pool; (5) the photoexcitation of an atom which ultimately
leads to fluorescence; (6) negative hydrogen absorption, etc. The reversal of the
above processes may contribute to the emission coefficient (see section 1.8).

The coefficient κa
ν depends on the thermodynamic state of the matter at (pressure

p, temperature T , chemical abundances αi ) any given point in the medium. At the
point r the coefficient is given by

κa
ν (r, T ) = κa

ν [p(r, T ), T (r), αi (r, T ), . . . , ακ(r, T )], (1.7.3)

when there is local thermodynamic equilibrium (LTE). This kind of situation does
not exist in reality and one needs to determine the κa

ν in a non-LTE situation. In static
media κa

ν is isotropic while in moving media it is angle and frequency dependent due
to Doppler shifts.

Another process by which energy is lost from the beam is the scattering of
radiation which is represented by the mass scattering coefficient κs

ν . Scattering
changes not only the photon’s direction but also its energy. If we define the albedo
for single scattering as ων , then

ων = σν

κν

, (1.7.4)

is the ratio of scattering to the extinction coefficients.
The extinction coefficient is the product of the atomic absorption coefficients or

scattering coefficients (cm2) and the number density of the absorbing or scattering
particles (cm−3). The dimension of κν is cm−1 and 1/κν gives the photon mean free
path which is the distance over which a photon travels before it is removed from the
pencil of the beam of radiation.

1.8 Emission coefficient

Let an element of mass with a volume element dV emit an amount of energy d Eν

into an element of solid angle dω centred around ��� in the frequency interval ν to
ν + dν and time interval t to t + dt . Then

d Eν = jν dV dω dν dt, (1.8.1)
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where jν is called the macroscopic emission coefficient or emissivity. The emis-
sivity has dimensions erg cm−3 sr−1 hz−1 s−1. Emission is the combination of the
reverse of the physical processes that cause true absorption. These processes are:
(a) radiative recombination: when a free electron occupies a bound state creating
a photon whose energy is the sum of the kinetic energy of the electron and the
binding energy; (b) bremsstrahlung: a free electron moving in one hyperbolic orbit
emits a photon by moving into a different hyperbolic orbit of lower energy; (c)
photo de-excitation or collisional de-excitation: a bound electron changes to another
bound state by emitting a photon through collision; (d) collisional recombination: a
photoexcited atom contributes photon energy by collisional ionization; the reverse
of this is called (three-body) collisional recombination; and (e) fluorescence: if a
photon is absorbed by an atom and it is excited from bound state p to another bound
state r , decays to an intermediate bound state q and then to the original state p,
this process is called fluorescence. The energy from the original absorbed photon is
re-emitted in two photons each of different energy.

A true picture of the occupation numbers is obtained only when the statistical
equilibrium equation, which describes all necessary processes that are to be taken
into account, is written. When LTE exists, the emission coefficient is given by

ja
ν (LTE) = κa

ν Bν(T ), (1.8.2)

where Bν(T ) is the Planck function:

Bν(T ) = 2hν3

c2

[
exp

(
hν

kT

)
− 1

]−1

. (1.8.3)

Equation (1.8.2) is known as Kirchhoff–Planck relation. In a non-LTE situation one
has to consider stimulated emission due to the presence of the radiation field and
spontaneous emission and the Einstein transition coefficients involved.

Emission of radiation can also be from the scattered photons. One can write

j s
ν (r,���) = 1

4π

∫ ∫
σ s

ν , (r, t)p(ν,���; ν′,���′; r, t)Iν′(r,���′, t) dν′ dω′. (1.8.4)

The phase function p can be normalized in such a way that∫ ∫
p(ν′,���′; ν, �, ;r, t) dν′ dω′ = 4π. (1.8.5)

This is the manifestation of the conservation of radiation flux, that is, the emitted
radiation balances that removed from the beam.

Equation (1.8.2) should be corrected for the stimulated scattering by multiplying
it by the correction factor{

1 + c2

2hν3
Iν(r,���, t)

}
. (1.8.6)
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This makes the transfer equation non-linear in Iν . Particles, such as ions, atoms,
molecules, electrons, solid particles, etc., scatter radiation and contribute to the
scattering coefficient.

1.9 The source function

The source function is defined as the ratio of the emission coefficient to the absorp-
tion coefficient:

Sν = jν/κν. (1.9.1)

From equations (1.7.4), (1.8.2) and (1.8.4), we can write the source function as

Sν(r,���, t) = [1 − ων(r, t)]Bν(r, t)

+ ων(r, t)

4π

∫ ∫
p(ν′, �′; ν,���; r, t)Iν′(r,���′; t) dν′ dω′.

(1.9.2)

1.10 Local thermodynamic equilibrium

The state of the gas (the distribution of atoms over bound and free states) in
thermodynamic equilibrium is uniquely specified by the thermodynamic variables –
the absolute temperature T and the total particle density N . The assumption of LTE
gives us the freedom to use (in a stellar atmosphere) the local values of T and N in
spite of the gradients that exist in the atmosphere. In LTE, the same temperature is
used in the velocity distribution of atoms, ions, electrons, etc. Thus the implications
of its assumption are drastic. The velocity distribution of the particles is Maxwellian
and the degrees of ionization and excitation are determined by the Saha Boltzmann
equation (see Mihalas (1978), Sen and Wilson (1998)).

The principle of detailed balance holds good for every transition. This means that
the number of radiative transitions i → j is balanced by the photoexcitation j → i
transitions, where i and j are the upper and lower levels respectively. Thus,

ni
[
Ai j + Bi j Bi j (ν, T )

] = nj Bji Bji (ν, T ) j < i, i = 2, . . . , (1.10.1)

where Ai j , Bi j and Bji are the Einstein coefficients and Bi j (ν, T ) and Bji (ν, T ) are
the Planck functions given by

Bi j (ν, T ) =
2hν3

i j

c2

[
exp

(
hνi j

kT

)
− 1

]−1

. (1.10.2)

The radiative ionization from level i is balanced by radiative recombination to i .
This gives us
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ne [Aci + Bci Bic(νic, T )] = ni Bic Bic(νic, T ), i = 1, 2, . . . , (1.10.3)

for collisional transition, with the detailed balance transitions given by the relations

ni Ci j = nj Cji , i, j = 1, 2, . . . i 
= j, (1.10.4)

where the Cs are collisional rates and the subscript c denotes the continuum.
In the LTE situation, the radiative transitions are negligible compared to colli-

sional transitions. This is an important consideration in treating non-LTE conditions
in stellar atmospheres.

1.11 Non-LTE conditions in stellar atmospheres

In LTE conditions the particle distribution is Maxwellian. Every transition is exactly
balanced by its inverse transition, that is, the principle of detailed balance holds good
in LTE. Generally, the excitation and de-excitation of the atomic levels is caused by
radiative and collisional processes. In the interior of the stars collisions dominate
over the radiative processes and LTE prevails. Near the surface of the atmosphere,
the radiative rates are not in detailed balance and there is a strong departure from
the LTE situation and then the non-LTE situation exists and one should adopt a joint
detailed balancing of the excitation and de-excitation of atomic levels. The LTE
condition can be determined by the comparative contribution of collisional rates
and radiative rates – dominance of the former prevails in the LTE situation, while
the opposite situation leads to a non-LTE situation. In stellar atmospheres, non-LTE
predominates and this should be taken into account in any transfer calculations.

Statistical equilibrium equations describe the equilibrium among various pro-
cesses leading to the establishment of an equilibrium state. The state of the gas
is assumed to be described by its kinetic temperature, the degrees of excitation and
the ionization of each atomic level. The equations of statistical equilibrium (or rate
equations) are used to calculate the occupation numbers of bound and free states of
atoms assuming complete redistribution (that is, the emission and absorption profiles
are identical) in a steady atmosphere.

Consider the changes in time of the number of particles in a given state i of a
chemical species α in a given volume element of a moving medium. The net rate at
which particles are brought to state i by radiative and collisional processes is given
by (

∂niα

∂t

)
=

∑
j 
=i

n jα Pα
j i − niα Pα

i + ∇ · (niα · V), (1.11.1)

where V is the velocity of the moving medium and Pji represents the total rate of
transfer from level j to level i (radiative and collisional). The second term on the
RHS gives the total number of particles entering and leaving the volume element,
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through the divergence theorem. The total number of particles of type α, Nα , is given
by the sum over all states of species α:

Nα =
∑

i

niα. (1.11.2)

Then we have the continuity equation(
∂ Nα

∂t

)
+ ∇ · S (NαV) = 0. (1.11.3)

If mα is the mass of each particle of type α, then by multiplying equation (1.11.3)
by mα and summing over all species of particles in this volume element, we get

ρ =
∑
α

mα Nα (1.11.4)

and

∂ρ

∂t
+ ∇ · (ρV) = 0. (1.11.5)

If the flow is steady, then∑
j 
=i

(
njα Pα

j i − niα Pα
i j

)
= ∇ · (niαV). (1.11.6)

If the atmosphere is static, then equation (1.11.6) becomes

ni

∑
j 
=i

Pi j −
∑
j 
=i

n j Pji = 0. (1.11.7)

We will write a simple model of the statistical equilibrium equation (see Mihalas and
Mihalas (1984), pages 386–398 for a detailed account or Mihalas (1978), chapter 5).
The equation for the population ni is

c∑
k=n+1

nk(Aki + Bki J̄ik + neCki ) +
i−1∑
j=1

nj
(
Bji J̄j i + neCji

)

= ni

[
i−1∑
j=1

(
Ai j + Bi j J̄j i + neCi j

) +
c∑

k=i+1

(
Bik J̄ik + neCik

)]
, (1.11.8)

where J̄ is the line profile weighted mean intensity. The terms on the LHS of
equation (1.11.8) represent different physical quantities:

∑
nk(Aki + Bki J̄ik) rep-

resents the spontaneous and stimulated radiative transitions from higher discrete
levels;

∑
nkneCki represents the collision induced transitions from upper levels;∑

nj Bji J̄j i represents the photoexcitation from lower levels; and
∑

nenj Cji repre-
sents the collisional excitation. Similarly the terms on the RHS of (1.11.8) have the
following meanings: ni

∑
(Ai j + Bi j J̄j i ) represents the spontaneous and stimulated

transitions to lower levels; neni
∑

Ci j represents the downward transitions induced
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by collisions (second kind); ni
∑

Bik J̄ik represents the photoexcitation into higher
levels; and neni

∑
Cik represents the upward transitions due to collisions with

electrons.
Equation (1.11.8) specifies the gas at a given point in the medium if the radiation

field (through J̄ ), temperature and electron density ne are specified.

1.12 Line source function for a two-level atom

This is one of the most useful quantities in the study of line transfer and has been
studied extensively.

Consider two levels 1 and 2 (lower and upper respectively) of an atom. The
principle of detailed balance gives us (see Mihalas and Mihalas (1984))

g2 B21 = g1 B12 (1.12.1)

and

A21 = 2hν3
12

c2
B21, (1.12.2)

where g1 and g2 are the statistical weights, hν12 is the energy difference between
levels 1 and 2 measured relative to the ground state and A and B are the Einstein
coefficients. The line absorption coefficient in terms of a convenient width  s is

κl(ν) = hν0

4π s
(N1 B12 − N2 B21), (1.12.3)

where N1 and N2 are the population densities of levels 1 and 2 respectively and ν0 is
the central frequency of the line. The line source function SL (see Grant and Peraiah
(1972)) is now written as

SL = A21 N2

(B12 N1 − B21 N2)
. (1.12.4)

We will use the following statistical equilibrium equation for a two-level atom:

N1

[
B12

∫ +∞

−∞
φ(x)J (x) dx + C12

]

= N2

[
A21 + C21 + B21

∫ +∞

−∞
φ(x)J (x) dx

]
, (1.12.5)

where

x = (ν − ν0)

 s
(1.12.6)

and φ(x) is the line profile function (see below) and then combining (1.12.4) and
(1.12.5) we obtain
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SL = (1 − ε)

∫ +∞

−∞
φ(x)J (x) dx + εB, (1.12.7)

where

ε = C21

C21 + A21
[
1 − exp(hν0/kT )

]−1
(1.12.8)

is the probability per scatter that a photon will be destroyed by collisional de-
excitation. When ε = 1, LTE prevails and if ε � 1, a non-LTE situation occurs.
In equations (1.12.7) and (1.12.8), B is the Planck function, k is the Boltzmann
constant and T is the temperature. Sometimes the line source function is written as

SL = J̄ + ε′ B
1 + ε′ , (1.12.9)

where

ε′ = ε/(1 − ε) (1.12.10)

and

J̄ =
∫ +∞

−∞
φ(x)J (x) dx . (1.12.11)

The line profiles are given by (Mihalas 1978):

Doppler: φ(x) = π− 1
2 exp(−x2), (1.12.12)

Lorentz: φ(x) = 1

π

1

1 + x2
, (1.12.13)

Voigt: φ(x) = aπ− 3
2

∫ +∞

−∞
exp(−x2)

[
(x − y)2 + a2

]
dy, (1.12.14)

where a is the ratio of the damping width to the Doppler width ("/4π νD).
The profile φ(x) is normalized such that∫ +∞

−∞
φ(x) dx = 1. (1.12.15)

1.13 Redistribution functions

In the process of the formation of spectral lines, we assume that scattering is either
coherent or completely redistributed over the profile of the line. These assumptions
are ideal and not achieved in real stellar atmospheres. It is necessary to find out
how after scattering the photons are redistributed in angle and frequency across the
line profile. These calculations are described in the form of partial redistribution
functions. First, we consider an atom in its own frame of reference and find the
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redistribution that happens within the substructure of the bound states. We need to
take into account the Doppler redistribution in the frequency produced by the atom’s
motion. Generally, the directions of the incident and emergent photons are different,
therefore the projection of the atom’s velocity vector along the propagation vectors
will be different for the two photons and a different Doppler shift occurs. This gives
rise to the Doppler redistribution. One needs to average over all possible velocities
to obtain the final redistribution function. This redistribution function will be used in
the line transfer calculation to obtain the correlation (if any) between the incoming
and outgoing photons. In what follows, we will give the redistribution functions that
will be useful in line transfer (see Hummer (1962), Mihalas (1978)).

The probability of emission of a photon after absorption is

R(ν, q, ν′, q′) dν′ d�′ dν d�, (1.13.1)

where ν and q are the frequency and direction of the absorbed photon and ν′ and q′

are the frequency and direction of the emitted photon. This probability is subject to
the condition∫ ∫ ∫ ∫

R(ν, q; ν′, q′) dν′ d�′ dν d� = 1. (1.13.2)

Here d� and d�′ are the real elements normal to directions q and q′ respectively. If
φ(ν′) dν′ is the probability that a photon with a frequency in the interval (ν, ν +dν)

is emitted in the interval (ν′, ν′ + dν′), then

4π

∫ ∫
R(ν′, q′; ν, q) dν d� = φ(ν′, q′), (1.13.3)

where φ(ν′, q′) is the profile function, which is again subjected to the normalization
condition that∫ ∫

φ(ν′q′) dν′ d�′ = 4π. (1.13.4)

The redistribution functions are given as follows (the roman subscripts are due to
Hummer (1962)):

(a) If we have two perfectly sharp upper and lower states in a bound–bound
transition, the photons follow a Doppler redistribution. This does not apply to any
real line. This redistribution function is given by (see Hummer (1962) and Mihalas
(1978))

RI−AD(x, q; x ′, q) = g(q, q′)
4π2 sin γ

exp
[
−x ′2 − (

x − x ′ cos γ
)2 cosec2γ

]
,

(1.13.5)

where RI−AD is the angle dependent redistribution function, the x ′s are the normal-
ized frequencies (see equation (1.12.6)) and γ is the angle between the vectors q
and q′. For isotropic scattering, the phase function is
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giso(q, q′) = 1

4π
, (1.13.6)

and for dipole scattering

gdip(q, q′) = 3

16π

(
1 + cos2 γ

)
. (1.13.7)

The redistribution function for isotropic scattering was first obtained by Thomas
(1947).

The angle-averaged redistribution function RI−A is given by

RI−A(x, x ′) = 1

2
erfc |x̄ | , (1.13.8)

where

erfc(x) = 2π− 1
2

∫ ∞

x
exp (−t2) dt (1.13.9)

and

|x̄ | = max
(
x, x ′). (1.13.10)

(b) In this case, we have an atom with a perfectly sharp lower state and an upper
state broadened by radiative decay or an upper state whose finite life time against
radiative decay (back to the lower state) leads to a Lorentz profile. This applies to
resonance lines in media of low densities in which collisional broadening of the
upper state is negligible, for example, the Lyman alpha line of hydrogen in the
interstellar medium. The angle dependent redistribution function is given by

RI I−AD(x, q; x ′, q′) = g(q, q′)
4π2 sin γ

exp

[
−

(
x − x ′

2

)2

cosec2
(γ

2

)]

× H

(
σ sec

γ

2
,

x + x ′

2
sec

γ

2

)
, (1.13.11)

where σ = δ/ , 4πδ being the sum of the transition probabilities from the
concerned states and  the Doppler width given by

 = ν0

(v

c

)
, v =

(
2kT

m

)1
2

, (1.13.12)

and H is the Voigt function given by

H(a, u) = a

π

∫ +∞

−∞
exp(−y2)

[
(u − y)2 + a2

]−1
dy. (1.13.13)

The function RI I was first introduced by Henyey (1941).
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The angle-averaged RI I function is given by

RI I−A(x, x ′) = π− 3
2

∫ ∞
1
2 |x̄−x|

exp(−u2)

[
tan−1 x + u

σ
− tan−1 x̄ − u

σ

]
du,

(1.13.14)

where x̄ = max(|x |, |x |′) and x = min(|x |, |x |′). RI I−A was first obtained by Unno
(1952) and later by Sobolev (1955). Furthermore,

φ(x) =
∫ +∞

−∞
RI I−A(iso)(x, x ′) dx ′ = H(a, x), (1.13.15)

a being the damping constant.
(c) The atom has a perfectly sharp lower state and a collisionally broadened upper

state. All the excited electrons are randomly distributed over the substates of the
upper states before emission occurs. In this case, the absorption profile is Lorentzian.
The damping comprises radiative and collisional rates and represents the full width
of the upper state. The redistribution function RI I I is given by

RI I I−AD(ν′, q′; ν, q) = g(q′, q)

π2 sin γ
a

×
∫ +∞

−∞
exp(−u2)H(a cosec γ, (x − u cos θ) cosec θ)

(x − u)2 + a2
du,

(1.13.16)

where a is the damping constant of the upper level. Heinzel (1981) gives an RI I I in
laboratory frame which is different from that of Hummer (1962):

RI I I−AD(ν′, q′; x, q) = g(q′, q)

4π2 sin γ

[
H

(
aj cosec

γ

2
,

x − x ′

2
cosec

γ

2

)

× exp

(
− x + x ′

2
sec2 θ

2

)
+ EI I I (x ′, x, γ )

]
;

(1.13.17)

see Heinzel (1981) for EI I I (x ′, x, γ ).
The angle-averaged RI I I−A is given by

RI I I−A(x ′, x) = π− 5
2

∫ ∞

0
exp(−u2)

[
tan−1

(
x ′ + u

a

)
− tan−1

(
x ′ − u

a

)]

×
[

tan−1
(

x + u

a

)
− tan−1

(
x − u

a

)]
du. (1.13.18)

(d) This function applies when a line is formed by an absorption from a broadened
state i to a broadened upper state j , followed by a radiative decay to state i . It applies
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to scattering in subordinate lines. This was derived by several authors with some
controversy but we will quote from Hummer (1962):

RI V −AD(x ′, q′; x, q) = g(q′, q)

2π2 sin γ

ai sec
γ

2
π

×
∫ +∞

−∞

exp(−y2)H
(

aj cosec
γ

2
, y cot

γ

2
− x cosec

γ

2

)
[
(x − x ′) sec

γ

2
− 2y

]2 +
(

ai sec
γ

2

)2
dy, (1.13.19)

and the angle-averaged RI V is

RI V −A(x ′, x) = π− 5
2 aj

∫ +∞

0
exp(−u2) du

×
∫ +1

−1

[
tan−1

(
x ′ − x + u(1 − µ)

ai

)
− tan−1

(
(x ′ − x − u(1 − µ)

ai

)]

× dµ

(x − µu)2 + a2
j

du, (1.13.20)

where

q · u = µ. (1.13.21)

(e) Heinzel (1981) has given RV , which becomes RI , RI I and RI I I in special
cases. RV is given in the laboratory reference frame by

RV (x ′, q′; x, q) = g(q′, q)

4π2 sin γ

[
H

(
aj sec

γ

2
,

x + x ′

2
sec

γ

2

)]

×H

(
ai cosec

γ

2
,

x − x ′

2
cosec

γ

2

)
+ EV (x ′, x, γ ), (1.13.22)

where

EV (x ′, x, γ ) = 4

π

∫ ∞

v=0

∫ ∞

u=εv

exp
[
−u2 − v2 − 2Aj u

]
× [

exp(−2Aj u) − exp(−2Aiεv)
]

cos Cu cos Du du dv,

(1.13.23)

with

Aj = α′aj , Ai = α′ai , α′ = 1

α
= sec

(γ

2

)
,

β ′ = 1

β
= cosec

(γ

2

)
, ε = α

β
,

C = α′(x + x ′), D = β ′(x − x ′),




(1.13.24)

aj , ai being the damping parameters. A detailed study is given in Heinzel (1981,
1982), Hubený (1982), Heinzel and Hubený (1983), Hubený et al. (1983).




